
Biopython Tutorial and Cookbook

Je� Chang, Brad Chapman, Iddo Friedberg, Thomas Hamelryck,
Michiel de Hoon, Peter Cock, Tiago Antao, Eric Talevich, Bartek Wilczy�nski

Contents

1 Introduction

4.3.1 SeqFeature objects . 38
4.3.2 Positions and locations . 39
4.3.3 Sequence described by a feature or location . 42

4.4 References . 43
4.5 The format method . 43
4.6 Slicing a SeqRecord . 43
4.7 Adding SeqRecord objects . 46
4.8 Reverse-complementing SeqRecord objects . 48

5 Sequence Input/Output 49
5.1 Parsing or Reading Sequences . 49

10 Swiss-Prot and ExPASy 146
10.1 Parsing Swiss-Prot �les

13.8 Comparing motifs . 203
13.9 De novo motif �nding . 204

13.9.1 MEME

Chapter 1

Introduction

1.1 What is Biopython?

The Biopython Project is an international association of developers of freely available Python (http://www.
python.org) tools for computational molecular biology. Python is an object oriented, interpreted,
exible

http://www.python.org
http://www.python.org
http://www.biopython.org

�

http://biopython.org/wiki/Download
http://biopython.org/DIST/docs/install/Installation.pdf
http://biopython.org/DIST/docs/install/Installation.pdf
http://biopython.org/DIST/docs/install/Installation.html

1.4 Frequently Asked Questions (FAQ)

1. How do I cite Biopython in a scienti�c publication?
Please cite our application note [1, Cock et al., 2009] as the main Biopython reference. In addition,
please cite any publications from the following list if appropriate, in particular as a reference for speci�c

If the \import Bio" line fails, Biopython is not installed. Note that those are double underscores

http://biopython.org/DIST/docs/tutorial/Tutorial.html
http://biopython.org/DIST/docs/tutorial/Tutorial.pdf
http://biopython.org/DIST/docs/tutorial/Tutorial-dev.html
http://biopython.org/DIST/docs/tutorial/Tutorial-dev.pdf
http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/AlignIO

14. Why doesn’t Bio.Entrez.parse()

28. Why doesn’t Bio.Fasta work?
We deprecated the Bio.Fasta module in Biopython 1.51 (August 2009) and removed it in Biopython
1.55 (August 2010). There is a brief example showing how to convert old code to use Bio.SeqIO
instead in the DEPRECATED �le.

For more general questions, the Python FAQ pages http://www.python.org/doc/faq/ may be useful.

13

http://biopython.org/SRC/biopython/DEPRECATED
http://www.python.org/doc/faq/

Chapter 2

Quick Start { What can you do with
Biopython?

http://www.python.org/doc/
http://biopython.org/DIST/docs/api/

followed by what you would type in:

>>> from Bio.Seq import Seq
>>> my_seq = Seq�kAGTACACTGGT"q�q
>>> my_seq

http://www.flickr.com/search/?q=lady+slipper+orchid&s=int&z=t
http://www.flickr.com/search/?q=lady+slipper+orchid&s=int&z=t
http://images.google.com/images?q=lady%20slipper%20orchid

2.4 Parsing sequence �le formats

A large part of much bioinformatics work involves dealing with the many types of �le formats designed to

http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta

2.4.2 Simple GenBank parsing example

Now let’s load the GenBank �le ls orchid.gbk instead - notice that the code to do this is almost identical
to the snippet used above for the FASTA �le - the only di�erence is we change the �lename and the format
string:

from Bio import SeqIO
for seq_record in SeqIO.parse("ls_orchid.gbk", "genbank"):

print(seq_record.id)
print(repr(seq_record.seq))
print(len(seq_record))

This should give:

Z78533.1
Seq(’CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG...CGC’, IUPACAmbiguousDNA())
740
...
Z78439.1

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk
http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/AlignIO
http://biopython.org/wiki/AlignIO
http://www.ncbi.nlm.nih.gov/Entrez/
http://www.ncbi.nlm.nih.gov/PubMed/
http://www.expasy.org/
http://scop.mrc-lmb.cam.ac.uk/scop/

http://biopython.org/wiki/Mailing_lists

Chapter 3

Sequence objects

http://www.chem.qmw.ac.uk/iupac/

>>> my_seq = Seq("AGTACACTGGT")
>>> my_seq
Seq(’AGTACACTGGT’, Alphabet())
>>> my_seq.alphabet
Alphabet()

However, where possible you should specify the alphabet explicitly when creating your sequence objects
- in this case an unambiguous DNA alphabet object:

>>> from Bio.Seq import Seq
>>> from Bio.Alphabet import IUPAC
>>> my_seq = Seq("AGTACACTGGT", IUPAC.unambiguous_dna)
>>> my_seq
Seq(’AGTACACTGGT’, IUPACUnambiguousDNA())
>>> my_seq.alphabet
IUPACUnambiguousDNA()

Unless of course, this really is an amino acid sequence:

>>> from Bio.Seq import Seq
>>> from Bio.Alphabet import IUPAC
>>> my_prot = Seq("AGTACACTGGT", IUPAC.protein)
>>> my_prot
Seq(’AGTACACTGGT’, IUPACProtein())
>>> my_prot.alphabet
IUPACProtein()

3.2 Sequences act like strings

In many ways, we can deal with Seq objects as if they were normal Python strings, for example getting the
length, or iterating over the elements:

>>> from Bio.Seq import Seq
>>> from Bio.Alphabet import IUPAC
>>> my_seq = Seq("GATCG", IUPAC.unambiguous_dna)
>>> for index, letter in enumerate(my_seqe:PAC

>>>stabet [(ate(my_seqe051))]TJ 0 -11.955 Td5051

The Seq object has a .count()

>>> from Bio.Alphabet import IUPAC
>>> from Bio.Seq import Seq
>>> protein_seq = Seq("EVRNAK", IUPAC.protein)
>>> dna_seq = Seq("ACGT", IUPAC.unambiguous_dna)
>>> protein_seq + dna_seq

In all of these operations, the alphabet property is maintained. This is very useful in case you accidentally

(seethenextsectionof

thistutorial).Bydefault,translationwillusethestandardgeneticcode(NCBItableid1).Supposeweare

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

ftp://ftp.ncbi.nlm.nih.gov/entrez/misc/data/gc.prt
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

For example, you might argue that the two DNA Seq objects Seq("ACGT", IUPAC.unambiguous dna)
and Seq("ACGT", IUPAC.ambiguous dna) should be equal, even though they do have di�erent alphabets.
Depending on the context this could be important.

This gets worse { suppose you think Seq("ACGT", IUPAC.unambiguous dna) and Seq("ACGT") (i.e. the
default generic alphabet) should be equal. Then, logically, Seq("ACGT", IUPAC.protein) and Seq("ACGT")
should also be equal. Now, in logic if A = B and B = C, by transitivity we expect A = C. So for logical
consistency we’d require Seq("ACGT", IUPAC.unambiguous dna) and Seq("ACGT", IUPAC.protein) to be
equal { which most people would agree is just not right. This transitivity also has implications for using Seq
objects as Python dictionary keys.

Now, in everyday use, your sequences will probably all have the same alphabet, or at least all be the
same type of sequence (all DNA, all RNA, or all protein). What you probably want is to just compare the
sequences as strings { which you can do explicitly:

>>> from Bio.Seq import Seq
>>> from Bio.Alphabet import IUPAC
>>> seq1 = Seq("ACGT", IUPAC.unambiguous_dna)
>>> seq2 = Seq("ACGT", IUPAC.ambiguous_dna)
>>> str(seq1) == str(seq2)
True
>>> str(seq1) == str(seq1)
True

So, what does Biopython do? Well, as of Biopython 1.65, sequence comparison only looks at the sequence,
essentially ignoring the alphabet:

>>> seq1 == seq2
True
>>> seq1 == "ACGT"
True

As an extension to this, using sequence objects as keys in a Python dictionary is now equivalent to using
the 0 -11.956 Txr3(0 -1(alllai-333(Py4(as)-956 Tx6(So)--333(on)-3334(as)-3do?)rote44525(g)-334(tld)-334525on)-3ab)-2

>>> from Bio.Seq import Seq
>>> from Bio.Alphabet import IUPAC
>>> my_seq = Seq("GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA", IUPAC.unambiguous_dna)

Observe what happens if you try to edit the sequence:

>>> my_seq[5] = "G"
Traceback (most recent call last):
...
TypeError: ’Seq’ object does not support item assignment

>>> from Bio.Seq importSeq
>>> from Bio.Alphabet import IUPAC

>>>my_seq =("GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA", IUPAC.unambiguous_dna)

3.13 UnknownSeq objects

The UnknownSeq object is a subclass of the basic Seq

Chapter 4

http://biopython.org/wiki/SeqRecord
http://biopython.org/DIST/docs/api/Bio.SeqRecord.SeqRecord-class.html
http://biopython.org/DIST/docs/api/Bio.SeqFeature.SeqFeature-class.html

.annotations

http://biopython.org/SRC/biopython/Tests/GenBank/NC_005816.fna

http://biopython.org/SRC/biopython/Tests/GenBank/NC_005816.gb

>>> record.seq

>>> my_location.sTt>>>my_location.sTt)

>>> for feature in record.features:
... if my_snp in feature:
... print("%s %s" % (feature.type, feature.qualifiers.get(’db_xref’)))
...
source [’taxon:229193’]
gene [’GeneID:2767712’]
CDS [’GI:45478716’, ’GeneID:2767712’]

Note that gene and CDS features from GenBank or EMBL �les de�ned with joins are the union of the
exons { they do not cover any introns.

4.3.3 Sequence described by a feature or location

A SeqFeature or location object doesn’t directly contain a sequence, instead the location (see Section 4.3.2)

4.4 References

Another common annotation related to a sequence is a reference to a journal or other published work

>>> len(sub_record)
500
>>> len(sub_record.features)
2

Our sub-record just has two features, the gene and CDS entries for YP_pPCP05:

>>> print(sub_record.features[0])
type: gene
location: [42:480](+)
qualifiers:

Key: db_xref, Value: [’:rID:2767712’]51
Key: geef, Value: pim’]51
Key:
Key: geef, Value: pim’]51

18.1.718.1.8

>>> edited = record[:20] + record[21:]

Also note that in an example like this, you should probably change the record identi�ers since the NCBI
references refer to the original unmodi�ed sequence.

4.8 Reverse-complementing SeqRecord objects

One of the new features in Biopython 1.57 was the SeqRecord object’s reverse_complement method. This
tries to balance easy of use with worries about what to do with the annotation in the reverse complemented

Chapter 5

http://biopython.org/wiki/SeqIO
http://biopython.org/DIST/docs/api/Bio.SeqIO-module.html
http://biopython.org/wiki/SeqIO

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk
http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/SeqIO
http://biopython.org/DIST/docs/api/Bio.SeqIO-module.html

Note that if you try to use next() and there are no more results, you’ll get the special StopIteration
exception.

One special case to consider is when your sequence �les have multiple records, but you only want the
�rst one. In this situation the following code is very concise:

from Bio import SeqIO
first_record = next(SeqIO.parse("ls_orchid.gbk", "genbank"))

A word of warning here { using the next() function like this will silently ignore any additional records

5.1.4 Extracting data

The SeqRecord object and its annotation structures are described more fully in Chapter 4. As an example
of how annotations are stored, we’ll look at the output from parsing the �rst record in the GenBank �le
ls orchid.gbk.

from Bio import SeqIO
record_iterator = SeqIO.parse("ls_orchid.gbk", "genbank")
first_record = next(record_iterator)
print(first_record)

That should give something like this:

ID: Z78533.1
Name: Z78533

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk

In general, ‘organism’ is used for the scienti�c name (in Latin, e.g. Arabidopsis thaliana), while ‘source’
will often be the common name (e.g. thale cress). In this example, as is often the case, the two �elds are
identical.

Now let’s go through all the records, building up a list of the species each orchid sequence is from:

from Bio import SeqIO
all_species = []
for seq_record in SeqIO.parse("ls_orchid.gbk", "genbank"):

all_species.append(seq_record.annotations["organism"])
print(all_species)

Another way of writing this code is to use a list comprehende

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta

5.2 Parsing sequences from compressed �les

In the previous section, we looked at parsing sequence data from a �le. Instead of using a �lename, you
can give Bio.SeqIO a handle (see Section 22.1

http://bugs.python.org/issue3860

http://www.ncbi.nlm.nih.gov/entrez/query/static/efetchseq_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/efetchseq_help.html

� Bio.SeqIO.to_dict() is the most
exible but also the most memory demanding option (see Sec-
tion 5.4.1

5.4.1.1 Specifying the dictionary keys

Using the same code as above, but for the FASTA �le instead:

from Bio import SeqIO
orchid_dict = SeqIO.to_dict(SeqIO.parse("ls_orchid.fasta", "fasta"))
print(orchid_dict.keys())

This time the keys are:

[’gi|2765596|emb|Z78471.1|PDZ78471’, ’gi|2765646|emb|Z78521.1|CCZ78521’, ...

This should give:

Z78533.1 JUEoWn6DPhgZ9nAyowsgtoD9TTo
Z78532.1 MN/s0q9zDoCVEEc+k/IFwCNF2pY
...
Z78439.1 H+JfaShya/4yyAj7IbMqgNkxdxQ

>>> from Bio import SeqIO
>>> orchid_dict = SeqIO.index("ls_orchid.fasta", "fasta")
>>> len(orchid_dict)
94
>>> orchid_dict.keys()

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.dat.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.dat.gz

5.4.3 Sequence �les as Dictionaries { Database indexed �les

Biopython 1.57 introduced an alternative, Bio.SeqIO.index_db(), which can work on even extremely large
�les since it stores the record information as a �le on disk (using an SQLite3 database) rather than in
memory. Also, you can index multiple �les together (providing all the record identi�ers are unique).

The Bio.SeqIO.index() function takes three required arguments:

� Index �lename, we suggest using something ending .idx

ftp://ftp.ncbi.nih.gov/genbank/
ftp://ftp.ncbi.nih.gov/genbank/
http://samtools.sourceforge.net/
http://samtools.sourceforge.net/tabix.shtml

>>> from Bio import SeqIO
>>> orchid_dict = SeqIO.index("ls_orchid.gbk", "genbank")
>>> len(orchid_dict)
94
>>> orchid_dict.close()

Reasons to choose Bio.SeqIO.index_db() over Bio.SeqIO.index()

from Bio import SeqIO
SeqIO.write(my_records, "my_example.faa", "fasta")

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk

http://biopython.org/wiki/AlignIO

6.1.1 Single Alignments

As an example, consider the following annotation rich protein alignment in the PFAM or Stockholm �le
format:

STOCKHOLM 1.0

http://pfam.sanger.ac.uk/

>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> print("Alignment length %i" % alignment.get_alignment_length())
Alignment length 52
>>> for record in alignment:
... print("%s - %s" % (record.seq, record.id))

http://pfam.sanger.ac.uk/family?acc=PF05371

http://biopython.org/wiki/AlignIO
http://biopython.org/wiki/AlignIO
http://biopython.org/DIST/docs/api/Bio.AlignIO-module.html

Epsilon CCCAAC
...

5 6
Alpha AAAACC
Beta ACCCCC
Gamma AAAACC
Delta CCCCAA
Epsilon CAAACC

If you wanted to read thi5-333(read)-333(thi5-333(read)ed)-333(thi5-333(read)-333(thi5-3Cusingy)27(oAAC)]TJ 0 -11154.Del0ma)-262io.AlignIOyou w60.854l0mathi5-34(coul3(thi5-use:y)27ilon)-157lon oAAC

from Bio import AlignIO
alignments = list(AlignIO.parse("resampled.phy", "phylip"))
last_align = alignments[-1]
first_align = alignments[0]

>YYY
ACTACGGCAAGCACAGG
>Alpha
--ACTACGAC--TAGCTCAGG
>ZZZ
GGACTACGACAATAGCTCAGG

6.2 Writing Alignments

We’ve talked about using Bio.AlignIO.read() and Bio.AlignIO.parse() for alignment input (reading
�les), and now we’ll look at Bio.AlignIO.write()

Its more common to want to load an existing alignment, and save that, perhaps after some simple
manipulation like removing certain rows or columns.

KA
KA
KA
KA
RA

If you have to work with the original strict PHYLIP format, then you may need to compress the identifers

from Bio import AlignIO
alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
print(alignment.format("clustal"))

As described in Section 4.5, the SeqRecord object has a similar method using output formats supported
by Bio.SeqIO.

Internally the format() method is using the StringIO string based handle and calling Bio.AlignIO.write()

DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRL...SKA COATB_BPI22/32-83

>>> print(alignment[:, 6:9])
SingleLetterAlphabet() alignment with 7 rows and 3 columns

6.3.2 Alignments as arrays

Depending on what you are doing, it can be more useful to turn the alignment object into an array of letters
{ and you can do this with NumPy:

>>> import numpy as np
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")

http://emboss.sourceforge.net/

6.4.1 ClustalW

http://biopython.org/DIST/docs/tutorial/examples/opuntia.fasta

>>> from Bio.Align.Applications import MuscleCommandline
>>> help(MuscleCommandline)
...

For the most basic usage, all you need is to have a FASTA input �le, such as opuntia.fasta (available
online or in the Doc/examples subdirectory of the Biopython source code). You can then tell MUSCLE to
read in this FASTA �le, and write the alignment to an output �le:

>>> from Bio.Align.Applications import MuscleCommandline
>>> cline = MuscleCommandline(input="opuntia.fasta", out="opuntia.txt")
>>> print(cline)
muscle -in opuntia.fasta -out opuntia.txt

Note that MUSCLE uses \-in" and \-out" but in Biopython we have to use \input" and \out" as the
keyword arguments

http://biopython.org/DIST/docs/tutorial/examples/opuntia.fasta

>>> from Bio.Align.Applications import MuscleCommandline

>>> handle = StringIO()
>>> SeqIO.write(records, handle, "fasta")
6
>>> data = handle.getvalue()

You can then run the tool and parse the alignment as follows:

>>> stdout, stderr = muscle_cline(stdin=data)
>>> from Bio import AlignIO
>>> align = AlignIO.read(StringIO(stdout), "clustal")
>>> print(align)
SingleLetterAlphabet() alignment with 6 rows and 900 columns

http://emboss.sourceforge.net/

>>> from Bio.Emboss.Applications import NeedleCommandline

Chapter 7

BLAST

Hey, everybody loves BLAST right? I mean, geez, how can it get any easier to do comparisons between one
of your sequences and every other sequence in the known world? But, of course, this section isn’t about how

http://www.ncbi.nlm.nih.gov/BLAST/blast_program.shtml
http://www.ncbi.nlm.nih.gov/BLAST/blast_program.shtml
http://www.ncbi.nlm.nih.gov/BLAST/blast_databases.shtml

� The qblast function can return the BLAST results in various formats, which you can choose with the
optional format_type keyword: "HTML", "Text", "ASN.1", or "XML". The default is "XML", as that is

>>> save_file = open("my_blast.xml", "w")
>>> save_file.write(result_handle.read())
>>> save_file.close()
>>> result_handle.close()

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=Download

http://blast.wustl.edu/
http://blast.advbiocomp.com
http://blast.advbiocomp.com

�

Or, you can use a for-loop:

>>> for blast_record in blast_records:

length: 783
e value: 0.034
tacttgttgatattggatcgaacaaactggagaaccaacatgctcacgtcacttttagtcccttacatattcctc...
||||||||| | ||||||||||| || |||| || || |||||||| |||||| | | |||||||| ||| ||...
tacttgttggtgttggatcgaaccaattggaagacgaatatgctcacatcacttctcattccttacatcttcttc...

Basically, you can do anything you want to with the info in the BLAST report once you have parsed it.
This will, of course, depend on what you want to use it for, but hopefully this helps you get started on doing
what you need to do!

Figure7.2:ClassdiagramforthePSIBlastRecordclass.

98

... print(’****Alignment****’)

... print(’sequence:’, alignment.title)

... print(’length:’, alignment.length)

... print(’e value:’, hsp.expect)

... print(hsp.query[0:75] + ’...’)

... print(hsp.match[0:75] + ’...’)

... print(hsp.sbjct[0:75] + ’...’)

If you also read the section 7.3 on parsing BLAST XML output, you’ll notice that the above code is
identical to what is found in that section. Once you parse something into a record class you can deal with
it independent of the format of the original BLAST info you were parsing. Pretty snazzy!

Sure, parsing one record is great, but I’ve got a BLAST �le with tons of records { how can I parse them
all? Well, fear not, the answer lies in the very next section.

7.5.2 Parsing a plain-text BLAST �le full of BLAST runs

7.5.3 Finding a bad record somewhere in a huge plain-text BLAST �le

One really ugly problem that happens to me is that I’ll be parsing a huge blast �le for a while, and the
parser will bomb out with a ValueError. This is a serious problem, since you can’t tell if the ValueError is

{ item[1] { The id of the input record that caused the error. This is really useful if you want to
record all of the records that are causing problems.

As mentioned, with each error generated, the BlastErrorParser will write the o�ending record to the
speci�ed error_handle. You can then go ahead and look and these and deal with them as you see �t.

http://biopython.org/SRC/Tests/Tutorial/my_blast.xml
http://biopython.org/SRC/Tests/Tutorial/my_blat.psl

Now let’s check our BLAT results using the same procedure as above:

>>> blat_qresult = SearchIO.read(’my_blat.psl’, ’blat-psl’)
>>> print(blat_qresult)
Program: blat (<unknown version>)

Query: mystery_seq (61)
<unknown description>

Target: <unknown target>

http://biopython.org/DIST/docs/api/Bio.SearchIO.BlastIO-module.html
http://biopython.org/DIST/docs/api/Bio.SearchIO.BlatIO-module.html

Sometimes, knowing whether a hit is present is not enough; you also want to know the rank of the hit.
Here, the index

Check out the HSP documentation

http://biopython.org/DIST/docs/api/Bio.SearchIO._model.hsp-module.html

http://biopython.org/DIST/docs/api/Bio.SearchIO._model.hsp-module.html

Query range: [0:61] (1)
Hit range: [0:61] (1)
Fragments: 1 (61 columns)

Query - CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGGG
|||

Hit - CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGGG

At this level, the BLAT fragment looks quite similar to the BLAST fragment, save for the query and hit

� The last one is on strand and reading frame values. For strands, there are only four valid choices: 1
(plus strand), -1

need to access only a few of the queries. This is because parse

be able to write the results to a PSL �le as PSL �les require attributes not calculated by BLAST (e.g. the
number of repeat matches). You can always set these attributes manually, if you really want to write to
PSL, though.

Like read, parse, index, and index_db, write also accepts format-speci�c keyword arguments. Check
out the documentation for a complete list of formats Bio.SearchIO can write to and their argum4f 232.905 01u784.0462 -11.960 Td [Finuallyalsoprof 23vidtesa

Chapter 9

Accessing NCBI’s Entrez databases

Entrez (http://www.ncbi.nlm.nih.gov/Entrez) is a data retrieval system that provides users access to
NCBI’s databases such as PubMed, GenBank, GEO, and many others. You can access Entrez from a web
browser to manually enter queries, or you can use Biopython’s Bio.Entrez module for programmatic access
to Entrez. The latter allows you for example to search PubMed or download GenBank records from within
a Python script.

The Bio.Entrez module makes use of the Entrez Programming Utilities (also known as EUtils), consisting

http://www.ncbi.nlm.nih.gov/Entrez
http://www.ncbi.nlm.nih.gov/entrez/utils/
http://www.ncbi.nlm.nih.gov/entrez/utils/

http://www.ncbi.nlm.nih.gov/books/NBK25497/#chapter2.Usage_Guidelines_and_Requiremen
http://eutils.ncbi.nlm.nih.gov

9.2 EInfo: Obtaining information about the Entrez databases

EInfo provides �eld index term counts, last update, and available links for each of NCBI’s databases. In
addition, you can use EInfo to obtain a list of all database names accessible through the Entrez utilities:

<DbName>unigene</DbName>
<DbName>unists</DbName>

http://www.ncbi.nlm.nih.gov/entrez/query/static/esearch_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/epost_help.html

http://www.ncbi.nlm.nih.gov/entrez/query/static/esummary_help.html
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/efetch_help.html

http://www.ncbi.nlm.nih.gov/entrez/query/static/efetch_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/efetch_help.html
http://eutils.ncbi.nlm.nih.gov/corehtml/query/static/efetchlit_help.html
http://eutils.ncbi.nlm.nih.gov/corehtml/query/static/efetchseq_help.html
http://eutils.ncbi.nlm.nih.gov/corehtml/query/static/efetchtax_help.html

EDKFLHLNYVSDLLIPHPIHLEILVQILQCRIKDVPSLHLLRLLFHEYHNLNSLITSK
KFIYAFSKRKKRFLWLLYNSYVYECEYLFQFLRKQSSYLRSTSSGVFLERTHLYVKIE
HLLVVCCNSFQRILCFLKDPFMHYVRYQGKAILASKGTLILMKKWKFHLVNFWQSYFH
FWSQPYRIHIKQLSNYSFSFLGYFSSVLENHLVVRNQMLENSFIINLLTKKFDTIAPV
ISLIGSLSKAQFCTVLGHPISKPIWTDFSDSDILDRFCRICRNLCRYHSGSSKKQVLY
RIKYILRLSCARTLARKHKSTVRTFMRRLGSGLLEEFFMEEE"

ORIGIN
1 attttttacg aacctgtgga aatttttggt tatgacaata aatctagttt agtacttgtg

61 aaacgtttaa ttactcgaat gtatcaacag aattttttga tttcttcggt taatgattct
121 aaccaaaaag gattttgggg gcacaagcat tttttttctt ctcatttttc ttctcaaatg
181 gtatcagaag gttttggagt cattctggaa attccattct cgtcgcaatt agtatcttct

http://www.ncbi.nlm.nih.gov/entrez/query/static/efetchseq_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/efetchseq_help.html
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/efetch_help.html

The record variable consists of a Python list, one for each database in which we searched. Since we
speci�ed only one PubMed ID to search for, record contains only one item. This item is a dictionary
containing information about our search term, as well as all the related items that were found:

>>> record[0]["DbFrom"]
’pubmed’
>>> record[0]["IdList"]
[’19304878’]

The "LinkSetDb"

http://www.ncbi.nlm.nih.gov/entrez/query/static/elink_help.html
http://eutils.ncbi.nlm.nih.gov/corehtml/query/static/entrezlinks.html

9.8 EGQuery: Global Query - counts for search terms

EGQuery provides counts for a search term in each of the Entrez databases (i.e. a global query). This

http://www.ncbi.nlm.nih.gov/entrez/query/static/egquery_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/espell_help.html

The resulting XML �le has a size of 6.1 GB. Attempting Entrez.read on this �le will result in a
MemoryError on many computers.

The XML �le Homo_sapiens.xml consists of a list of Entrez gene records, each corresponding to one
Entrez gene in human. Entrez.parse retrieves these gene records one by one. You can then print out or
store the relevant information in each record by iterating over the records. For example, this script iterates
over the Entrez gene records and prints out the gene numbers and names for all current genes:

>>> from Bio import Entrez

record = handler.read(handle)
File "/usr/local/lib/python2.7/site-packages/Bio/Entrez/Parser.py", line 164, in read

raise NotXMLError(e)
Bio.Entrez.Parser.NotXMLError: Failed to parse the XML data (syntax error: line 1, column 0). Please make sure that the input data are in XML format.

Here, the parser didn't �nd the <?xml ... tag with which an XML �le is supposed to start, and therefore
decides (correctly) that the �le is not an XML �le.

...
</Field>

</FieldList>
<DocsumList>

<Docsum>
<DsName>PubDate</DsName>
<DsType>4</DsType>
<DsTypeName>string</DsTypeName>

</Docsum>
<Docsum>

<DsName>EPubDate</DsName>
...

</DbInfo>
</eInfoResult>

http://www.ncbi.nlm.nih.gov/entrez/query/static/efetch_help.html

9.12.1 Parsing Medline records

...
A high level interface to SCOP and ASTRAL implemented in python.

9.12.2 Parsing GEO records

GEO (

http://www.ncbi.nlm.nih.gov/geo/
ftp://ftp.ncbi.nih.gov/pub/geo/
ftp://ftp.ncbi.nih.gov/pub/geo/
ftp://ftp.ncbi.nih.gov/pub/geo/DATA/SOFT/by_series/GSE16/GSE16_family.soft.gz
ftp://ftp.ncbi.nih.gov/pub/geo/DATA/SOFT/by_series/GSE16/GSE16_family.soft.gz

PROTSIM ORG=9986; PROTGI=126722851; PROTID=NP_001075655.1; PCT=76.90; ALN=288
...
PROTSIM ORG=9598; PROTGI=114619004; PROTID=XP_519631.2; PCT=98.28; ALN=288

UpUNT 388

9.13 Using a proxy

http://www.python.org/doc/lib/module-urllib.html
http://www.ncbi.nlm.nih.gov/PubMed/

NOTE - We’ve just done a separate search and fetch here, the NCBI much prefer you to take advantage
of their history support in this situation. See Section 9.15.

Keep in mind that records is an iterator, so you can iterate through the records only once. If you want
to save the records, you can convert them to a list:

>>> records = list(records)

Let’s now iterate over the records to print out some information about each record:

>>> for record in records:
... print("title:", record.get("TI", "?"))
... print("authors:", record.get("AU", "?"))
... print("source:", record.get("SO", "?"))
... print("")

The output for this looks like:

title: Sex pheromone mimicry in the early spider orchid (ophrys sphegodes):

... if row["DbName"]=="nuccore":

... print(row["Count"])
814

So, we expect to �nd 814 Entrez Nucleotide records (this is the number I obtained in 2008; it is likely to
increase in the future). If you �nd some ridiculously high number of hits, you may want to reconsider if you
really want to download all of them, which is our next step:

http://www.ncbi.nlm.nih.gov/

>>> text = handle.read()
>>> print(text)

>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> handle = Entrez.esearch(db="Taxonomy", term="Cypripedioideae")
>>> record = Entrez.read(handle)
>>> record["IdList"]
[’158330’]
>>> record["IdList"][0]
’158330’

Now, we use efetch to download this entry in the Taxonomy database, and then parse it:

>>> handle = Entrez.efetch(db="Taxonomy", id="158330", retmode="xml")
>>> records = Entrez.read(handle)

When you get the XML output back, it will still include the usual search results:

>>> gi_list = search_results["IdList"]
>>> count = int(search_results["Count"])
>>> assert count == len(gi_list)

>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com"
>>> pmid = "14630660"
>>> results = Entrez.read(Entrez.elink(dbfrom="pubmed", db="pmc",
... LinkName="pubmed_pmc_refs", from_uid=pmid))

Chapter 10

Swiss-Prot and ExPASy

10.1 Parsing Swiss-Prot �les

http://www.expasy.org/sprot

>>> from Bio import SwissProt
>>> record = SwissProt.read(handle)

This function should be used if the handle points to exactly one Swiss-Prot record. It raises a ValueError
if no Swiss-Prot record was found, and also if more than one record was found.

We can now print out some information about this record:

>>> print(record.description)
’RecName: Full=Chalcone synthase 3; EC=2.3.1.74; AltName: Full=Naringenin-chalcone synthase 3;’
>>> for ref in record.references:
... print("authors:", ref.authors)
... print("title:", ref.title)
...
authors: Liew C.F., Lim S.H., Loh C.S., Goh C.J.;
title: "Molecular cloning and sequence analysis of chalcone synthase cDNAs of
Bromheadia finlaysoniana.";
>>> print(record.organism_classification)
[’Eukaryota’, ’Viridiplantae’, ’Streptophyta’, ’Embryophyta’, ..., ’Bromheadia’]

ftp://ftp.expasy.org/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.dat.gz

>>> from Bio import SwissProt
>>> descriptions = []
>>> handle = open("uniprot_sprot.dat")
>>> for record in SwissProt.parse(handle):
... descriptions.append(record.description)
...
>>> len(descriptions)
468851

Because this is such a large input �le, either way takes about eleven minutes on my new desktop computer
(using the uncompressed uniprot_sprot.dat �le as input).

It is equally easy to extract any kind of information you’d like from Swiss-Prot records. To see the
members of a Swiss-Prot record, use

>>> dir(record)
[’__doc__’, ’__init__’, ’__module__’, ’accessions’, ’annotation_update’,
’comments’, ’created’, ’cross_references’, ’data_class’, ’description’,
’entry_name’, ’features’, ’gene_name’, ’host_organism’, ’keywords’,
’molecule_type’, ’organelle’, ’organism’, ’organism_classiB iption’,

>>> from Bio.SwissProt import KeyWList
>>> handle = open("keywlist.txt")
>>> records = KeyWList.parse(handle)
>>> for record in records:
... print(record[’ID’])
... print(record[’DE’])

This prints

2Fe-2S.
Protein which contains at least one 2Fe-2S iron-sulfur cluster: 2 iron atoms
complexed to 2 inorganic sulfides and 4 sulfur atoms of cysteines from the
protein.
...

10.2 Parsing Prosite records

ftp://ftp.expasy.org/databases/prosite/prosite.dat

>>> record.name
’PKC_PHOSPHO_SITE’
>>> record.pdoc
’PDOC00005’

and so on. If you’re interested in how many Prosite records there are, you could use

>>> from Bio.ExPASy import Prosite
>>> handle = open("prosite.dat")
>>> records = Prosite.parse(handle)
>>> n = 0
>>> for record in records: n+=1
...
>>> n
2073

To read exactly one Prosite from the handle, you can use the read function:

>>> from Bio.ExPASy import Prosite
>>> handle = open("mysingleprositerecord.dat")
>>> record = Prosite.read(handle)

This function raises a ValueError if no Prosite record is found, and also if more than one Prosite record is
found.

10.3 Parsing Prosite documentation records

In the Prosite example above, the record.pdoc accession numbers ’PDOC00001’, ’PDOC00004’, ’PDOC00005’
and so on refer to Prosite documentation. The Prosite documentation records are available from ExPASy
as individual �les, and as one �le (prosite.doc) containing all Prosite documentation records.

We use the parser in Bio.ExPASy.Prodoc to parse Prosite documentation records. For example, to create
a list of all accession numbers of Prosite documentation record, you can use

>>> from Bio.ExPASy import Prodoc
>>> handle = open("prosite.doc")
>>> records = Prodoc.parse(handle)
>>> accessions = [record.accession for record in records]

Again a

CC -!- Also hydrolyzes diacylglycerol.
PR PROSITE; PDOC00110;
DR P11151, LIPL_BOVIN ; P11153, LIPL_CAVPO ; P11602, LIPL_CHICK ;
DR P55031, LIPL_FELCA ; P06858, LIPL_HUMAN ; P11152, LIPL_MOUSE ;
DR O46647, LIPL_MUSVI ; P49060, LIPL_PAPAN ; P49923, LIPL_PIG ;
DR Q06000, LIPL_RAT ; Q29524, LIPL_SHEEP ;
//

In this example, the �rst line shows the EC (Enzyme Commission) number of lipoprotein lipase (sec-
ond line). Alternative names of lipoprotein lipase are "clearing factor lipase", "diacylglycerol lipase", and
"diglyceride lipase" (lines 3 through 5). The line starting with "CA" shows the catalytic activity of this
enzyme. Comment lines start with "CC". The "PR" line shows references to the Prosite Documentation
records, and the "DR" lines show references to Swiss-Prot records. Not of these entries are necessarily
present in an Enzyme record.

In Biopython, an Enzyme record is represented by the Bio.ExPASy.Enzyme.Record class. This record
derives from a Python dictionary and has keys corresponding to the two-letter codes used in Enzyme �les.
To read an Enzyme �le containing one Enzyme record, use the read function in Bio.ExPASy.Enzyme:

>>> from Bio.ExPASy import Enzyme
>>> with open("lipoprotein.txt") as handle:
... record = Enzyme.read(handle)
...
>>> record["ID"]

ftp://ftp.expasy.org/databases/enzyme/enzyme.dat
ftp://ftp.expasy.org/databases/enzyme/enzyme.dat

http://www.expasy.org

10.5.2 Searching Swiss-Prot

Now, you may remark that I knew the records’ accession numbers beforehand. Indeed, get_sprot_raw()

http://www.expasy.org/cgi-bin/sprot-search-de
http://www.expasy.org/cgi-bin/sprot-search-ful
http://www.expasy.org/cgi-bin/sprot-search-ful

http://www.expasy.org/tools/scanprosite/
http://www.expasy.org/tools/scanprosite/scanprosite-doc.html
http://www.expasy.org/tools/scanprosite/ScanPrositeREST.html

6
>>> result[0]
{’signature_ac’: u’PS50948’, ’level’: u’0’, ’stop’: 98, ’sequence_ac’: u’USERSEQ1’, ’start’: 16, ’score’: u’8.873’}
>>> result[1]
{’start’: 37, ’stop’: 39, ’sequence_ac’: u’USERSEQ1’, ’signature_ac’: u’PS00005’}
>>> result[2]
{’start’: 45, ’stop’: 48, ’sequence_ac’: u’USERSEQ1’, ’signature_ac’: u’PS00006’}
>>> result[3]
{’start’: 60, ’stop’: 62, ’sequence_ac’: u’USERSEQ1’, ’signature_ac’: u’PS00005’}
>>> result[4]
{’start’: 80, ’stop’: 83, ’sequence_ac’: u’USERSEQ1’, ’signature_ac’: u’PS00004’}
>>> result[5]
{’start’: 106, ’stop’: 111, ’sequence_ac’: u’USERSEQ1’, ’signature_ac’: u’PS00008’}

Other ScanProsite parameters can be passed as keyword arguments; see the

http://www.expasy.org/tools/scanprosite/ScanPrositeREST.html
http://www.expasy.org/tools/scanprosite/ScanPrositeREST.html

http://genepop.curtin.edu.au/

[

11.2 Coalescent simulation

http://cmpg.unibe.ch/software/fastsimcoal2/
http://cmpg.unibe.ch/software/fastsimcoal2/

11.2.1.2 Chromosome structure

We strongly recommend reading Fastsimcoal2 documentation to understand the full potential available
in modeling chromosome structures. In this subsection we only discuss how to implement chromosome
structures using the Biopython interface, not the underlying Fastsimcoal2 capabilities.

We will start by implementing a single chromosome, with 24 SNPs with a recombination rate immediately
on the right of each locus of 0.0005 and a minimum frequency of the minor allele of 0. This will be speci�ed
by the following list (to be passed as second parameter to the function generate simcoal from template):

npops Number of populations existing in nature. This is really a \guestimate". Has to be lower than 100.

In practice, when the number of populations is low, the mutation model is stepwise and the sample size
increases, fdist will not be able to simulate an acceptable approximate average Fst.

To address that, a function is provided to iteratively approach the desired value by running several fdists
in sequence. This approach is computationally more intensive than running a single fdist run, but yields
good results. The following code runs fdist approximating the desired Fst:

sim_fst = ctrl.run_fdist_force_fst(npops = 15, nsamples = fd_rec.num_pops,
fst = fst, sample_size = samp_size, mut = 0, num_sims = 40000,
limit = 0.05)

The only new optional parameter, when comparing with run fdist, is limit which is the desired maximum
error. run

Chapter 12

Phylogenetics with Bio.Phylo

The Bio.Phylo module was introduced in Biopython 1.54. Following the lead of SeqIO and AlignIO, it aims

http://biopython.org/SRC/biopython/Doc/examples/simple.dnd

Clade(name=’C’)
Clade(name=’D’)

Clade()
Clade(name=’E’)
Clade(name=’F’)
Clade(name=’G’)

The

Figure 12.1: A rooted tree drawn with Phylo.draw.

Note that the �le formats Newick and Nexus don’t support branch colors or widths, so if you use these

>>> tree.clade[0, 1].color = "blue"

Finally, show our work (see Fig. 12.2):

>>> Phylo.draw(tree)

Figure 12.2: A colorized tree drawn with Phylo.draw.

http://biopython.org/wiki/Phylo_cookbook

12.3 View and export treesThe simplest way to get an overview of aTreeobject is toprintit:>>> from Bio import Phylo>>> tree = Phylo.read("PhyloXML/example.xml", "phyloxml")>>> print(tree)Phylogeny(description=’phyloXML allows to use either a "branch_length" attribute...’, name=’example from Prof. Joe Felsenstein’s book "Inferring Phyl...’, rooted=True)Clade()Clade(branch_length=G
06)Clade(branch_length=G
102, name=’A’)Clade(branch_length=G
23, name=’B’)Clade(branch_length=G
4, name=’C’)

Figure 12.7: A larger tree, using neato

http://biopython.org/wiki/Phylo

Since
oating-point arithmetic can produce some strange behavior, we don’t support matching

12.4.2 Information methods

prune

http://biopython.org/wiki/Phylo
http://biopython.org/wiki/PhyloXML
http://www.atgc-montpellier.fr/phyml/
http://sco.h-its.org/exelixis/software.html
http://www.microbesonline.org/fasttree/

12.6 PAML integration

Biopython 1.58 brought support for PAML (

http://abacus.gene.ucl.ac.uk/software/paml.html
http://biopython.org/wiki/PAML
http://biopython.org/wiki/PAML
http://biopython.org/wiki/Phylo_cookbook

Bio.Nexus port Much of this module was written during Google Summer of Code 2009, under the auspices
of NESCent, as a project to implement Python support for the phyloXML data format (see 12.4.4).

http://pythonhosted.org/DendroPy/
http://pythonhosted.org/DendroPy/
http://pycogent.org/

http://fraenkel.mit.edu/TAMO/

then we can create a Motif object as follows:

>>> m.alphabet
IUPACUnambiguousDNA()
>>> m.alphabet.letters
’GATC’
>>> sorted(m.alphabet.letters)
[’A’, ’C’, ’G’, ’T’]
>>> m.counts[’A’,:]
(3, 7, 0, 2, 1)
>>> m.counts[0,:]
(3, 7, 0, 2, 1)

http://weblogo.berkeley.edu

13.2 Reading motifs

Creating motifs from instances by hand is a bit boring, so it’s useful to have some I/O functions for reading

http://jaspar.genereg.net
http://pazar.info

>MA0052.1 MEF2A
A [1 0 57 2 9 6 37 2 56 6]
C [50 0 1 1 0 0 0 0 0 0]
G [0 0 0 0 0 0 0 0 2 50]
T [7 58 0 55 49 52 21 56 0 2]

The motifs are read as follows:

>>> fh = open("jaspar_motifs.txt")
>>> for m in motifs.parse(fh, "jaspar"))
... print(m)
TF name Arnt
Matrix ID MA0004.1
Matrix:

0 1 2 3 4 5
A: 4.00 19.00 0.00 0.00 0.00 0.00
C: 16.00 0.00 20.00 0.00 0.00 0.00
G: 0.00 1.00 0.00 20.00 0.00 20.00
T: 0.00 0.00 0.00 0.00 20.00 0.00

TF name RUNX1
Matrix ID MA0002.1
Matrix:

0 1 2 3 4 5 6 7 8 9 10
A: 10.00 12.00 4.00 1.00 2.00 2.00 0.00 0.00 0.00 8.00 13.00
C: 2.00 2.00 7.00 1.00 0.00 8.00 0.00 0.00 1.00 2.00 2.00
G: 3.00 1.00 1.00 0.00 23.00 0.00 26.00 26.00 0.00 0.00 4.00
T: 11.00 11.00 14.00 24.00 1.00 16.00 0.00 0.00 25.00 16.00 7.00

TF name MEF2A
Matrix ID MA0052.1
Matrix:

0 1 2 3 4 5 6 7 8 9
A: 1.00 0.00 57.00 2.00 9.00 6.00 37.00 2.00 56.00 6.00
C: 50.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
G: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 50.00
T: 7.00 58.00 0.00 55.00 49.00 52.00 21.00 56.00 0.00 2.00

http://jaspar.genereg.net

>>> from Bio.motifs.jaspar.db import JASPAR5
>>>
>>> JASPAR_DB_HOST = <hostname>
>>> JASPAR_DB_NAME = <db_name>
>>> JASPAR_DB_USER = <user>
>>> JASPAR_DB_PASS = <passord>
>>>
>>> jdb = JASPAR5(

http://tfbs.genereg.net/

>>> motif.pseudocounts = motifs.jaspar.calculate_pseudocounts(motif)

**

To parse a TRANSFAC �le, use

Table 13.2: Fields used to store references in TRANSFAC �les
RN Reference number
RA Reference authors
RL Reference data
RT Reference title

07 46 0 0 0 A
08 1 0 0 45 T

A: 0.40 0.84 0.07 0.29 0.18
C: 0.04 0.04 0.60 0.27 0.71
G: 0.04 0.04 0.04 0.38 0.04
T: 0.51 0.07 0.29 0.07 0.07
<BLANKLINE>

>>> for pos, seq in r.instances.search(test_seq):
... print("%i %s" % (pos, seq))
...
6 GCATT
20 GCATT

13.6.2 Searching for matches using the PSSM score

It’s just as easy to look for positions, giving rise to high log-odds scores against our motif:

>>> for position, score in pssm.search(test_seq, threshold=3.0):
... print("Position %d: score = %5.3f" % (position, score))
...
Position 0: score = 5.622
Position -20: score = 4.601
Position 10: score = 3.037
Position 13: score = 5.738
Position -6: score = 4.601

The negative positions refer to instances of the motif found on the reverse strand of the test sequence, and
follow the Python convention on negative indices. Therefore, the instance of the motif at pos is located at
test_seq[pos:pos+len(m)]os

0 1 2 3 4 5
A: 4.00 19.00 0.00 0.00 0.00 0.00
C: 16.00 0.00 20.00 0.00 0.00 0.00
G: 0.00 1.00 0.00 20.00 0.00 20.00
T: 0.00 0.00 0.00 0.00 20.00 0.00
<BLANKLINE>
>>> print(motif.pwm)

0 1 2 3 4 5
A: 0.20 0.95 0.00 0.00 0.00 0.00
C: 0.80 0.00 1.00 0.00 0.00 0.00
G: 0.00 0.05 0.00 1.00 0.00 1.00
T: 0.00 0.00 0.00 0.00 1.00 0.00
<BLANKLINE>

>>> print(motif.pss=t1i2wm)

>>> print(motif.pssm)
0 1 2 3 4 5

A: -0.19 1.46 -1.42 -1.42 -1.42 -1.42
C: 1.25 -1.42 1.52 -1.42 -1.42 -1.42
G: -1.42 -1.00 -1.42 1.52 -1.42 1.52
T: -1.42 -1.42 -1.42 -1.42 1.52 -1.42
<BLANKLINE>

You can also set the .pseudocounts to a dictionary over the four nucleotides if you want to use di�erent
pseudocounts for them. Setting motif.pseudocounts to None resets it to its default value of zero.

The position-speci�c scoring matrix depends on the background distribution, which is uniform by default:

>>> for letter in "ACGT":
... print("%s: %4.2f" % (letter, motif.background[letter]))
...
A: 0.25
C: 0.25
G: 0.25
T: 0.25

Again, if you modify the background distribution, the position-speci�c scoring matrix is recalculated:

>>> print("%f" % motif.pssm.mean(motif.background))
4.703928

as well as its standard deviation:

>>> print("%f" % motif.pssm.std(motif.background))
3.290900

and its distribution:

>>> m_reb1.pseudocounts = {’A’:0.6, ’C’: 0.4, ’G’: 0.4, ’T’: 0.6}
>>> m_reb1.background = {’A’:0.3,’C’:0.2,’G’:0.2,’T’:0.3}
>>> pssm_reb1 = m_reb1.pssm

.command

8.71e-07

13.9.2 AlignAce

13.10 Useful links

� Sequence motif in wikipedia

� PWM in wikipedia

� Consensus sequence in wikipedia

� Comparison of di�erent motif �nding programs

206

http://en.wikipedia.org/wiki/Sequence_motif
http://en.wikipedia.org/wiki/Position_weight_matrix
http://en.wikipedia.org/wiki/Consensus_sequence
http://bio.cs.washington.edu/assessment/

Chapter 14

Cluster analysis

linear congruential generators, two (integer) seeds are needed for initialization, for which we use the system-
supplied random number generator rand (in the C standard library). We initialize this generator by calling
srand with the epoch time in seconds, and use the �rst two random numbers generated by rand as seeds for

where

�(0)
x =

vuut 1
n

nX
i=1

x2
i ;

�(0)
y =

vuut 1
n

nX
i=1

y2
i :

>>> from Bio.Cluster import clustercentroids
>>> cdata, cmask = clustercentroids(data)

where the following arguments are de�ned:

� data (required)
Array containing the data for the items.

� mask (default: None)
Array of integers showing which data are missing. If mask[i,j]==0, then data[i,j] is missing. If
mask==None, then all data are present.

� clusterid (default: None)
Vector ofo.ata[i,j]

�

� transpose (default: 0)
Determines if rows (transpose is 0

{ as a list containing the rows of the left-lower part of the distance matrix:

distance = [array([]|,
array([1.1]),
array([2.3, 4.5])

]

These three expressions correspond to the same distance matrix.

� nclusters (default: 2)
The number of clusters k.

� npass (default: 1)
The number of times the k-medoids clustering algorithm is performed, each time with a di�erent
(random) initial condition. If initialid is given, the value of npass is ignored, as the clustering
algorithm behaves deterministically in that case.

� initialid (default: None)
Speci�es the initial clustering to be used for the EM algorithm. If initialid==None, then a di�erent
random initial clustering is used for each of the npass runs of the EM algorithm. If initialid is not
None

� In pairwise average-linkage clustering, the distance between two nodes is de�ned as the average over

>>> node.right = 2
>>> node.distance = 0.73
>>> node
(6, 2): 0.73

An error is raised if left and right are not integers, or if distance cannot be converted to a
oating-point
value.

The Python class Tree represents a full hierarchical clustering solution. A Tree object can be created
from a list of Node objects:

>>> from Bio.Cluster import Node, Tree
>>> nodes = [Node(1, 2, 0.2), Node(0, 3, 0.5), Node(-2, 4, 0.6), Node(-1, -3, 0.9)]
>>> tree = Tree(nodes)
>>> print(tree)

This guarantees that any Tree object is always well-formed.
To display a hierarchical clustering solution with visualization programs such as Java Treeview, it is

better to scale all node distances such that they are between zero and one. This can be accomplished by

The parameter � is a parameter that decreases at each iteration step. We have used a simple linear function
of the iteration step:

� = �init �
�

1� i

n

�
;

�init is the initial value of � as speci�ed by the user, i is the number of the current iteration step, and n is
the total number of iteration steps to be performed. While changes are made rapidly in the beginning of the

http://rana.lbl.gov
http://jtreeview.sourceforge.net/
http://rana.lbl.gov/manuals/ClusterTreeView.pdf
http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/cluster3.pdf

� gweight
The weights that are to be used to calculate the distance in expression pro�le between genes. If not
present in the data �le, gweight is set to None.

� gorder

� transpose (default: 0)
Determines if the centroids of the rows of data are to be calculated (transpose==0

� transpose

14.8 Example calculation

Chapter 15

The logistic regression model gives us appropriate values for the parameters �0, �1, �2 using two sets of
example genes:

�

[85, -193.94],
[16, -182.71],
[15, -180.41],
[-26, -181.73],
[58, -259.87],
[126, -414.53],
[191, -249.57],
[113, -265.28],
[145, -312.99],
[154, -213.83],
[147, -380.85],
[93, -291.13]]

Iteration: 2 Log-likelihood function: -5.76877209868
Iteration: 3 Log-likelihood function: -5.11362294338

0, corresponding to class OP and class NOP, respectively. For example, let’s consider the gene pairs yxcE,
yxcD and yxiB, yxiA:

Table 15.2: Adjacent gene pairs of unknown operon status.
Gene pair Intergene distance x1 Gene expression score x2

yxcE | yxcD 6 -173.143442352
yxiB | yxiA 309 -271.005880394

The logistic regression model classi�es yxcE, yxcD as belonging to the same operon (class OP), while
yxiB, yxiA are predicted to belong to di�erent operons:

>>> print("yxcE, yxcD:", LogisticRegression.classify(model, [6, -173.143442352]))
yxcE, yxcD: 1
>>> print("yxiB, yxiA:", LogisticRegression.classify(model, [309, -271.005880394]))
yxiB, yxiA: 0

...
>>> x = [6, -173.143442352]

True: 1 Predicted: 1
True: 1 Predicted: 0
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 1 Predicted: 1
True: 1 Predicted: 0
True: 0 Predicted: 0
True: 0 Predicted: 0
True: 0 Predicted: 1
True: 0 Predicted: 0

Chapter 16

Graphics including GenomeDiagram

The Bio.Graphics module depends on the third party Python library ReportLab. Although focused on
producing PDF �les, ReportLab can also create encapsulated postscript (EPS) and (SVG) �les. In addition

http://www.reportlab.org
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/
http://biopython.org/DIST/docs/GenomeDiagram/userguide.pdf

http://biopython.org/SRC/biopython/Tests/GenBank/NC_005816.gb

Figure 16.1: Simple linear diagram for Yersinia pestis biovar Microtus plasmid pPCP1.

Figure 16.2: Simple circular diagram for Yersinia pestis biovar Microtus plasmid pPCP1.

240

16.1.4 A bottom up example

Now let’s produce exactly the same �gures, but using the bottom up approach. This means we create the
di�erent objects directly (and this can be done in almost any order) and then combine them.

from reportlab.lib import colors
from reportlab.lib.units import cm
from Bio.Graphics import GenomeDiagram
from Bio import SeqIO
record = SeqIO.read("NC_005816.gb", "genbank")

#Create the feature set and its feature objects,
gd_feature_set = GenomeDiagram.FeatureSet()
for feature in record.features:

if feature.type != "gene":
#Exclude this feature
continue

if len(gd_feature_set) % 2 == 0:
color = colors.blue

else:
color = colors.lightblue

gd_feature_set.add_feature(feature, color=color, label=True)
#(this for loop is the same as in the previous example)

#Create a track, and a diagram
gd_track_for_features = GenomeDiagram.Track(name="Annotated Features")
gd_diagram = GenomeDiagram.Diagram("Yersinia pestis biovar Microtus plasmid pPCP1")

#Now have to glue the bits together...
gd_track_for_features.add_set(gd_feature_set)
gd_diagram.add_track(gd_track_for_features, 1)

You can now call the draw and write methods as before to produce a linear or circular diagram, using
the code at the end of the top-down example above. The �gures should be identical.

16.1.5 Features without a SeqFeature

In the above example we used a SeqRecord’s SeqFeature objects to build our diagram (see also Section 4.3).

gds_features = gdt_features.new_set()

#Add three features to show the strand options,
feature = SeqFeature(FeatureLocation(25, 125), strand=+1)
gds_features.add_feature(feature, name="Forward", label=True)

Figure 16.3: Simple GenomeDiagram showing label options. The top plot in pale green shows the default
label settings (see Section 16.1.5) while the rest show variations in the label size, position and orientation
(see Section 16.1.6).

243

16.1.7 Feature sigils

The examples above have all just used the default sigil for the feature, a plain box, which was all that was

Figure 16.4: Simple GenomeDiagram showing di�erent sigils (see Section 16.1.7)

245

Figure 16.5: Simple GenomeDiagram showing arrow shaft options (see Section 16.1.8246

gd_feature_set.add_feature(feature, sigil="BIGARROW")

start=0, end=len(record))
gd_diagram.write("plasmid_linear_nice.pdf", "PDF")
gd_diagram.write("plasmid_linear_nice.eps", "EPS")
gd_diagram.write("plasmid_linear_nice.svg", "SVG")

gd_diagram.draw(format="circular", circular=True, pagesize=(20*cm,20*cm),

Figure 16.8: Circular diagram for Yersinia pestis biovar Microtus plasmid pPCP1 showing selected restriction
digest sites (see Section 16.1.9).

250

You can download these using Entrez if you like, see Section

http://www.sanger.ac.uk/resources/software/artemis/

i+=1

(30, "orf53", "lin2567"),
(28, "orf54", "lin2566"),

]

http://biopython.org/SRC/biopython/Doc/examples/Proux_et_al_2002_Figure_6.py

Figure 16.10: Linear diagram with three tracks for Lactococcus phage Tuc2009 (NC 002703), bacteriophage
bIL285 (AF323668), and prophage 5 from Listeria innocua Clip11262 (NC 003212) plus basic cross-links
shaded by percentage identity (see Section 16.1.11).

is to allocate space for empty tracks. Furthermore, in cases like this where there are no large gene overlaps,
we can use the axis-straddling BIGARROW sigil, which allows us to further reduce the vertical space needed

http://biopython.org/SRC/biopython/Doc/examples/Proux_et_al_2002_Figure_6.py

These options are not covered here yet, so for now we refer you to the

http://biopython.org/DIST/docs/GenomeDiagram/userguide.pdf
ftp://ftp.ncbi.nlm.nih.gov/genomes/Arabidopsis_thaliana

Arabidopsis thaliana

Chr I Chr II Chr III Chr IV Chr V

Figure 16.12: Simple chromosome diagram for Arabidopsis thaliana.

chr_diagram.draw("simple_chrom.pdc_ "Arabidopsis thaliana"w�

ftp://ftp.ncbi.nlm.nih.gov/genomes/Arabidopsis_thaliana

#Add a closing telomere
end = BasicChromosome.TelomereSegment(inverted=True)
end.scale = telomere_length
cur_chromosome.add(end)

Chapter 17

KEGG

KEGG (http://www.kegg.jp/) is a database resource for understanding high-level functions and utilities
of the biological system, such as the cell, the organism and the ecosystem, from molecular-level informa-
tion, especially large-scale molecular datasets generated by genome sequencing and other high-throughput
experimental technologies.

Please note that the KEGG parser implementation in Biopython is incomplete. While the KEGG website

http://www.kegg.jp/
http://rest.kegg.jp/get/ec:5.4.2.2
http://www.kegg.jp/kegg/rest/keggapi.html

>>> request = REST.kegg_get("ec:5.4.2.2")
>>> open("ec_5.4.2.2.txt", ’w’).write(request.read())
>>> records = Enzyme.parse(open("ec_5.4.2.2.txt"))
>>> record = list(records)[0]
>>> record.classname
[’Isomerases;’, ’Intramolecular transferases;’, ’Phosphotransferases (phosphomutases)’]
>>> record.entry
’5.4.2.2’

Now, here’s a more realistic example which shows a combination of querying the KEGG API. This will
demonstrate how to extract a unique set of all human pathway gene symbols which relate to DNA repair.
The steps that need to be taken to do so are as follows. First, we need to get a list of all human pathways.

http://www.kegg.jp/kegg/docs/keggapi.html

/list/hsa:10458+ece:Z5100 -> REST.kegg_list(["hsa:10458", "ece:Z5100"])
/find/compound/300-310/mol_weight -> REST.kegg_find("compound", "300-310", "mol_weight")
/get/hsa:10458+ece:Z5100/aaseq -> REST.kegg_get(["hsa:10458", "ece:Z5100"], "aaseq")

264

Chapter 18

Cookbook { Cool things to do with it

http://biopython.org/wiki/Category:Cookbook

http://biopython.org/SRC/biopython/Tests/GenBank/NC_005816.gb

Personally I prefer the following version using a function to shu�e the record and a generator expression
instead of the for loop:

import random
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from Bio import SeqIO

def make_shuffle_record(record, new_id):
nuc_list = list(record.seq)
random.shuffle(nuc_list)
return SeqRecord(Seq("".join(nuc_list), record.seq.alphabet), \

id=new_id, description="Based on %s" % original_rec.id)

original_rec = SeqIO.read("NC_005816.gb","genbank")
shuffled_recs = (make_shuffle_record(original_rec, "Shuffled%i" % (i+1)) \

for i in range(30))
handle = open("shuffled.fasta", "w")
SeqIO.write(shuffled_recs, handle, "fasta")
handle.close()

First we scan through the �le once using Bio.SeqIO.parse()

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR020/SRR020192/SRR020192.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR020/SRR020192/SRR020192.fastq.gz
http://www.ebi.ac.uk/ena/data/view/SRS004476

This pulled out only 14580 reads out of the 41892 present. A more sensible thing to do would be to quality

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR020/SRR020192/SRR020192.fastq.gz

This takes longer, as this time the output �le contains all 41892 reads. Again, we’re used a generator
expression to avoid any memory problems. You could alternatively use a generator function rather than a
generator expression.

from Bio import SeqIO
def trim_primers(records, primer):

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR020/SRR020192/SRR020192.fastq.gz

trimmed_reads = trim_adaptors(original_reads, "GATGACGGTGT")
count = SeqIO.write(trimmed_reads, "trimmed.fastq", "fastq")

This means a wrong read (Pe= 1) gets a PHRED quality of 0, while a very good read likePe= 0:00001gets a PHRED quality of 50. While for raw sequencing data qualities higher than this are rare, with post

http://www.biopython.org/DIST/docs/api/Bio.SeqIO.QualityIO-module.html

18.1.10 Converting FASTA and QUAL �les into FASTQ �les

FASTQ �les hold both sequences and their quality strings. FASTA �les hold just sequences, while QUAL
�les hold just the qualities. Therefore a single FASTQ �le can be converted to or from paired FASTA and
QUAL �les.

Going from FASTQ to FASTA is easy:

from Bio import SeqIO
SeqIO.convert("example.fastq", "fastq", "example.fasta", "fasta")

Going from FASTQ to QUAL is also easy:

from Bio import SeqIO
SeqIO.convert("example.fastq", "fastq", "example.qual", "qual")

However, the reverse is a little more tricky. You can use Bio.SeqIO.parse() to iterate over the records
in a single �le, but in this case we have two input �les. There are several strategies possible, but assuming
that the two-362J -(There)--(Treallye)--(TpTd 8(v)2 [(that)-365mos5 Td [(mettlye)--(TSeq16cie(e)-35 Td [(w8(e)a385(qual [(i62J -(Ttt)28(w)lo(an)-op)28(w)rate)-330(o)28((w)1(an)-Td [J -(Tttgethar(qua394les[J -(Tco(an)-de-525(SeqIO)]TJ 0 -11i62J 8130(is81330(a)-33082)28(od(osdl(tric(sequ3(is)-3813w8(e)e)-3813prrate)-ide2J 8130(is813function(is813calledn)-329(use)]TJ/F34 99.9796 Tf 80.3PTd 8(F",)-Q",)I(to)-7(tqual"))]TJ/F8 924.095 Tf 80.3in(is813that)-329(use)]TJ/F34 99.735Tf 247.639 0 Td [(Qthe)-yt)-525l"))]TJ/F8 J -.962)]TJ 14.944 -11mo(an)-du)-33083Ttt)2883Tdt)2883T5(in(quaF)1T(in)-383T5ak330(on)-383T5the)-367(t)2883Th84(lon)-383TeqIOthat)-83178 0 Td [(F)111(A83(ASTQ)-35783(nces)-33(that)-8314(to)-3F)1ASTQ(oss).pars1ASTQaFeturn3F)soss).pais813that use

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR020/SRR020192/SRR020192.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR020/SRR020192/SRR020192.fastq.gz

>>> fq_dict.keys()[:4]
[’SRR020192.38240’, ’SRR020192.23181’, ’SRR020192.40568’, ’SRR020192.23186’]

18.1.13 Identifying open reading frames

http://biopython.org/SRC/biopython/Tests/GenBank/NC_005816.fna

table = 11
min_pro_len = 100

def find_orfs_with_trans(seq, trans_table, min_protein_length):
answer = []
seq_len = len(seq)
for strand, nuc in [(+1, seq), (-1, seq.reverse_complement())]:

for frame in range(3):
trans = str(nuc[frame:].translate(trans_table))
trans_len = len(trans)
aa_start = 0
aa_end = 0
while aa_start < trans_len:

aa_end = trans.find("*", aa_start)
if aa_end == -1:

aa_end = trans_len
if aa_end-aa_start >= min_protein_length:

if strand == 1:
start = frame+aa_start*3
end = min(seq_len,frame+aa_end*3+3)

else:
start = seq_len-frame-aa_end*3-3
end = seq_len-frame-aa_start*3

answer.append((start, end, strand,
trans[aa_start:aa_end]))

aa_start = aa_end+1
answer.sort()
return answer

orf_list = find_orfs_with_trans(record.seq, table, min_pro_len)
for start, end, strand, pro in orf_list:

print("%s...%s - length %i, strand %i, %i:%i" \
% (pro[:30], pro[-3:], len(pro), strand, start, end))

And the output:

NQIQGVICSPDSGEFMVTFETVMEIKILHK...GVA - length 355, strand 1, 41:1109
WDVKTVTGVLHHPFHLTFSLCPEGATQSGR...VKR - length 111, strand -1, 491:827
KSGELRQTPPASSTLHLRLILQRSGVMMEL...NPE - length 285, strand 1, 1030:1888
RALTGLSAPGIRSQTSCDRLRELRYVPVSL...PLQ - length 119, strand -1, 2830:3190
RRKEHVSKKRRPQKRPRRRRFFHRLRPPDE...PTR - length 128, strand 1, 3470:3857

before, so you can check this is doing the same thing. Here we have sorted them by location to make it easier
to compare to the actual annotation in the GenBank �le (as visualised in Section 16.1.9).

If however all you want to �nd are the locations of the open reading frames, then it is a waste of time
to translate every possible codon, including doing the reverse complement to search the reverse strand too.
All you need to do is search for the possible stop codons (and their reverse complements). Using regular

http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta

Figure 18.1: Histogram of orchid sequence lengths.

18.2.2 Plot of sequence GC%

Another easily calculated quantity of a nucleotide sequence is the GC%. You might want to look at the

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta

Figure 18.3: Nucleotide dot plot of two orchid sequence lengths (using pylab’s imshow function).

Note that we have not checked for reverse complement matches here. Now we’ll use the matplotlib’s

dict_two = {}
for (seq, section_dict) in [(str(rec_one.seq).upper(), dict_one),

(str(rec_two.seq).upper(), dict_two)]:
for i in range(len(seq)-window):

section = seq[i:i+window]
try:

section_dict[section].append(i)
except KeyError:

section_dict[section] = [i]
#Now find any sub-sequences found in both sequences
#(Python 2.3 would require slightly different code here)
matches = set(dict_one).intersection(dict_two)

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR001/SRR001666/SRR001666_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR001/SRR001666/SRR001666_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR001/SRR001666/SRR001666_2.fastq.gz
http://www.ebi.ac.uk/ena/data/view/SRR001666

Figure 18.4: Nucleotide dot plot of two orchid sequence lengths (using pylab’s scatter function).

import pylab
from Bio import SeqIO
for subfigure in [1,2]:

filename = "SRR001666_%i.fastq" % subfigure

consensus = summary_align.dumb_consensus()

http://www.lecb.ncifcrf.gov/~toms/paper/primer/
http://www.lecb.ncifcrf.gov/~toms/paper/primer/

�

file:examples/protein.aln
http://biopython.org/DIST/docs/tutorial/examples/protein.aln

>>> from Bio import SubsMat
>>> my_arm = SubsMat.SeqMat(replace_info)

http://www.biosql.org/
http://open-bio.org/
http://biopython.org/wiki/BioSQL

Chapter 19

The Biopython testing framework

http://docs.python.org/library/unittest.html

�

http://tox.readthedocs.org/en/latest/

� Manually look at the �le test_Biospam to make sure the output is correct. When you are
sure it is all right and there are no bugs, you need to quickly edit the test_Biospam �le so
that the �rst line is: ‘test_Biospam’ (no quotes).

� copy the test_Biospam �le to the directory Tests/output

(b) The quick way:

� Run python run_tests.py -g test_Biospam.py. The regression testing framework is nifty

http://docs.python.org/library/unittest.html

import unittest
from Bio import Biospam

class BiospamTestAddition(unittest.TestCase):

def test_addition1(self):
result = Biospam.addition(2, 3)
self.assertEqual(result, 5)

def test_addition2(self):
result = Biospam.addition(9, -1)
self.assertEqual(result, 8)

class BiospamTestDivision(unittest.TestCase):

def test_division1(self):
result = Biospam.division(3.0, 2.0)
self.assertAlmostEqual(result, 1.5)

def test_division2(self):
result = Biospam.division(10.0, -2.0)
self.assertAlmostEqual(result, -5.0)

if __name__ == "__main__":
runner = unittest.TextTestRunner(verbosity = 2)
unittest.main(testRunner=runner)

In the division tests, we use assertAlmostEqual

http://docs.python.org/library/unittest.html

Now let’s check division ... ok

http://docs.python.org/library/doctest.html
http://docs.python.org/library/doctest.html

Note that if you want to write doctests involving �le parsing, de�ning the �le location complicates matters.
Ideally use relative paths assuming the code will be run from the Tests directory, see the Bio.SeqIO doctests
for an example of this.

To run the docstring tests only, use

$ python run_tests.py doctest

297

Chapter 20

Advanced

20.1 Parser Design

Many of the older Biopython parsers were built around an event-oriented design that includes Scanner and

(a) __init__(self,data=None,alphabet=None, mat_name=’’, build_later=0):

i. data

i. Full matrix size: N*N
ii. Half matrix size: N(N+1)/2

The SeqMat constructor automatically generates a half-matrix, if a full matrix is passed. If a half

(a) acc_rep_mat: user provided accepted replacements matrix

(b) exp_freq_table

Summing up to 1.

When passing a dictionary as an argument, you should indicate whether it is a count or a frequency
dictionary. Therefore the FreqTable class constructor requires two arguments: the dictionary itself,
and FreqTable.COUNT or FreqTable.FREQ indicating counts or frequencies, respectively.

Chapter 21

Where to go from here { contributing
to Biopython

http://biopython.org/wiki/Mailing_lists
https://github.com/biopython/biopython/issues
https://github.com/biopython/biopython/issues
http://redmine.open-bio.org/projects/biopython
http://redmine.open-bio.org/projects/biopython
http://biopython.org/DIST/docs/api
http://biopython.org/wiki/Category:Cookbook

21.5 Maintaining a distribution for a platform

http://www.rpm.org

21.7 Contributing Code

http://biopython.org/wiki/Contributing
http://biopython.org/wiki/Scriptcentral

Chapter 22

Appendix: Useful stu� about Python

If you haven’t spent a lot of time programming in Python, many questions and problems that come up in
using Biopython are often related to Python itself. This section tries to present some ideas and code that
come up often (at least for us!) while using the Biopython libraries. If you have any suggestions for useful
pointers that could go here, please contribute!

22.1 What the heck is a handle?

Handles are mentioned quite frequently throughout this documentation, and are also fairly confusing (at
least to me!). Basically, you can think of a handle as being a \wrapper" around text information.

Handles provide (at least) two bene�ts over plain text information:

1. They provide a standard way to deal with information stored in di�erent ways. The text information
can be in a �le, or in a string stored in memory, or the output from a command line program, or at
some remote website, but the handle provides a common way of dealing with information in all of these
formats.

2. They allow text information to be read incrementally, instead of all at once. This is really important

file:examples/m_cold.fasta
http://biopython.org/DIST/docs/tutorial/examples/m_cold.fasta

On older versions of Biopython you had to use a handle, e.g.

from Bio import SeqIO
handle = open("m_cold.fasta", "r")
for record in SeqIO.parse(handle, "fasta"):

print(record.id, len(record))
handle.close()

Bibliography

[1]

http://dx.doi.org/10.1093/bioinformatics/btp163
http://dx.doi.org/10.1093/bioinformatics/btk021
http://dx.doi.org/10.1146/annurev.phyto.44.070505.143444
http://dx.doi.org/10.1007/s10482-009-9316-9
http://dx.doi.org/10.1128/JB.184.21.6026-6036.2002
http://dx.doi.org/10.1186/1471-2164-13-75
http://dx.doi.org/10.1093/nar/gkp1137
http://dx.doi.org/10.1038/4462
http://dx.doi.org/10.1186/1471-2105-13-209
http://dx.doi.org/10.1093/nar/13.9.3021
http://dx.doi.org/10.1093/nar/15.4.1353

http://dx.doi.org/10.1093/bioinformatics/bth078
http://dx.doi.org/10.1073/pnas.96.19.10943-c
http://dx.doi.org/10.1093/bioinformatics/btg299
http://dx.doi.org/10.1002/prot.10338
http://dx.doi.org/10.1002/prot.20379
http://dx.doi.org/10.1145/42372.42381
http://dx.doi.org/10.1145/62959.62969
http://dx.doi.org/10.1186/1471-2105-6-202
http://dx.doi.org/10.1093/nar/gkg108
http://dx.doi.org/10.1093/comjnl/16.1.30

[30] Pablo Tamayo, Donna Slonim, Jill Mesirov, Qing Zhu, Sutisak Kitareewan, Ethan Dmitrovsky, Eric S.
Lander, Todd R. Golub: \Interpreting patterns of gene expression with self-organizing maps: Methods
and application to hematopoietic di�erentiation". Proceedings of the National Academy of Science USA
96 (6): 2907{2912 (1999). doi:10.1073/pnas.96.6.2907

[31] Robert C. Tryon, Daniel E. Bailey: Cluster analysis. New York: McGraw-Hill (1970).

[32] John W. Tukey: \Exploratory data analysis". Reading, Mass.: Addison-Wesley Pub. Co. (1977).

[33] Ka Yee Yeung, Walter L. Ruzzo: \Principal Component Analysis for clustering gene expression data".
Bioinformatics 17 (9): 763{774 (2001). doi:10.1093/bioinformatics/17.9.763

[34] Alok Saldanha: \Java Treeview|extensible visualization of microarray data". Bioinformatics 20 (17):
3246{3248 (2004). http://dx.doi.org/10.1093/bioinformatics/bth349

310

http://dx.doi.org/10.1073/pnas.96.6.2907
http://dx.doi.org/10.1093/bioinformatics/17.9.763
http://dx.doi.org/10.1093/bioinformatics/bth349

	Introduction
	What is Biopython?
	What can I find in the Biopython package
	Installing Biopython
	Frequently Asked Questions (FAQ)

	Quick Start -- What can you do with Biopython?
	General overview of what Biopython provides
	Working with sequences
	A usage example
	Parsing sequence file formats
	Simple FASTA parsing example
	Simple GenBank parsing example
	I love parsing -- please don't stop talking about it!

	Connecting with biological databases
	What to do next

	Sequence objects
	Sequences and Alphabets
	Sequences act like strings
	Slicing a sequence
	Turning Seq objects into strings
	Concatenating or adding sequences
	Changing case
	Nucleotide sequences and (reverse) complements
	Transcription
	Translation
	Translation Tables
	Comparing Seq objects
	MutableSeq objects
	UnknownSeq objects
	Working with strings directly

	Sequence annotation objects
	The SeqRecord object
	Creating a SeqRecord
	SeqRecord objects from scratch
	SeqRecord objects from FASTA files
	SeqRecord objects from GenBank files

	Feature, location and position objects
	SeqFeature objects
	Positions and locations
	Sequence described by a feature or location

	References
	The format method
	Slicing a SeqRecord
	Adding SeqRecord objects
	Reverse-complementing SeqRecord objects

	Sequence Input/Output
	Parsing or Reading Sequences
	Reading Sequence Files
	Iterating over the records in a sequence file
	Getting a list of the records in a sequence file
	Extracting data

	Parsing sequences from compressed files
	Parsing sequences from the net
	Parsing GenBank records from the net
	Parsing SwissProt sequences from the net

	Sequence files as Dictionaries
	Sequence files as Dictionaries -- In memory
	Sequence files as Dictionaries -- Indexed files
	Sequence files as Dictionaries -- Database indexed files
	Indexing compressed files
	Discussion

	Writing Sequence Files
	Round trips
	Converting between sequence file formats
	Converting a file of sequences to their reverse complements
	Getting your SeqRecord objects as formatted strings

	Multiple Sequence Alignment objects
	Parsing or Reading Sequence Alignments
	Single Alignments
	Multiple Alignments
	Ambiguous Alignments

	Writing Alignments
	Converting between sequence alignment file formats
	Getting your alignment objects as formatted strings

	Manipulating Alignments
	Slicing alignments
	Alignments as arrays

	Alignment Tools
	ClustalW
	MUSCLE
	MUSCLE using stdout
	MUSCLE using stdin and stdout
	EMBOSS needle and water

	BLAST
	Running BLAST over the Internet
	Running BLAST locally
	Introduction
	Standalone NCBI BLAST+
	Other versions of BLAST

	Parsing BLAST output
	The BLAST record class
	Deprecated BLAST parsers
	Parsing plain-text BLAST output
	Parsing a plain-text BLAST file full of BLAST runs
	Finding a bad record somewhere in a huge plain-text BLAST file

	Dealing with PSI-BLAST
	Dealing with RPS-BLAST

	BLAST and other sequence search tools (experimental code)
	The SearchIO object model
	QueryResult
	Hit
	HSP
	HSPFragment

	A note about standards and conventions
	Reading search output files
	Dealing with large search output files with indexing
	Writing and converting search output files

	Accessing NCBI's Entrez databases
	Entrez Guidelines
	EInfo: Obtaining information about the Entrez databases
	ESearch: Searching the Entrez databases
	EPost: Uploading a list of identifiers
	ESummary: Retrieving summaries from primary IDs
	EFetch: Downloading full records from Entrez
	ELink: Searching for related items in NCBI Entrez
	EGQuery: Global Query - counts for search terms
	ESpell: Obtaining spelling suggestions
	Parsing huge Entrez XML files
	Handling errors
	Specialized parsers
	Parsing Medline records
	Parsing GEO records
	Parsing UniGene records

	Using a proxy
	Examples
	PubMed and Medline
	Searching, downloading, and parsing Entrez Nucleotide records
	Searching, downloading, and parsing GenBank records
	Finding the lineage of an organism

	Using the history and WebEnv
	Searching for and downloading sequences using the history
	Searching for and downloading abstracts using the history
	Searching for citations

	Swiss-Prot and ExPASy
	Parsing Swiss-Prot files
	Parsing Swiss-Prot records
	Parsing the Swiss-Prot keyword and category list

	Parsing Prosite records
	Parsing Prosite documentation records
	Parsing Enzyme records
	Accessing the ExPASy server
	Retrieving a Swiss-Prot record
	Searching Swiss-Prot
	Retrieving Prosite and Prosite documentation records

	Scanning the Prosite database

	Bio.PopGen: Population genetics
	GenePop
	Coalescent simulation
	Creating scenarios
	Running Fastsimcoal2

	Other applications
	FDist: Detecting selection and molecular adaptation

	Future Developments

	Phylogenetics with Bio.Phylo
	Demo: What's in a Tree?
	Coloring branches within a tree

	I/O functions
	View and export trees
	Using Tree and Clade objects
	Search and traversal methods
	Information methods
	Modification methods
	Features of PhyloXML trees

	Running external applications
	PAML integration
	Future plans

	Sequence motif analysis using Bio.motifs
	Motif objects
	Creating a motif from instances
	Creating a sequence logo

	Reading motifs
	JASPAR
	MEME
	TRANSFAC

	Writing motifs
	Position-Weight Matrices
	Position-Specific Scoring Matrices
	Searching for instances
	Searching for exact matches
	Searching for matches using the PSSM score
	Selecting a score threshold

	Each motif object has an associated Position-Specific Scoring Matrix
	Comparing motifs
	De novo motif finding
	MEME
	AlignAce

	Useful links

	Cluster analysis
	Distance functions
	Calculating cluster properties
	Partitioning algorithms
	Hierarchical clustering
	Self-Organizing Maps
	Principal Component Analysis
	Handling Cluster/TreeView-type files
	Example calculation
	Auxiliary functions

	Supervised learning methods
	The Logistic Regression Model
	Background and Purpose
	Training the logistic regression model
	Using the logistic regression model for classification
	Logistic Regression, Linear Discriminant Analysis, and Support Vector Machines

	k-Nearest Neighbors
	Background and purpose
	Initializing a k-nearest neighbors model
	Using a k-nearest neighbors model for classification

	Naïve Bayes
	Maximum Entropy
	Markov Models

	Graphics including GenomeDiagram
	GenomeDiagram
	Introduction
	Diagrams, tracks, feature-sets and features
	A top down example
	A bottom up example
	Features without a SeqFeature
	Feature captions
	Feature sigils
	Arrow sigils
	A nice example
	Multiple tracks
	Cross-Links between tracks
	Further options
	Converting old code

	Chromosomes
	Simple Chromosomes
	Annotated Chromosomes

	KEGG
	Parsing KEGG records
	Querying the KEGG API

	Cookbook -- Cool things to do with it
	Working with sequence files
	Filtering a sequence file
	Producing randomised genomes
	Translating a FASTA file of CDS entries
	Making the sequences in a FASTA file upper case
	Sorting a sequence file
	Simple quality filtering for FASTQ files
	Trimming off primer sequences
	Trimming off adaptor sequences
	Converting FASTQ files
	Converting FASTA and QUAL files into FASTQ files
	Indexing a FASTQ file
	Converting SFF files
	Identifying open reading frames

	Sequence parsing plus simple plots
	Histogram of sequence lengths
	Plot of sequence GC%
	Nucleotide dot plots
	Plotting the quality scores of sequencing read data

	Dealing with alignments
	Calculating summary information
	Calculating a quick consensus sequence
	Position Specific Score Matrices
	Information Content

	Substitution Matrices
	Using common substitution matrices
	Creating your own substitution matrix from an alignment

	BioSQL -- storing sequences in a relational database

	The Biopython testing framework
	Running the tests
	Running the tests using Tox

	Writing tests
	Writing a print-and-compare test
	Writing a unittest-based test

	Writing doctests

	Advanced
	Parser Design
	Substitution Matrices
	SubsMat
	FreqTable

	Where to go from here -- contributing to Biopython
	Bug Reports + Feature Requests
	Mailing lists and helping newcomers
	Contributing Documentation
	Contributing cookbook examples
	Maintaining a distribution for a platform
	Contributing Unit Tests
	Contributing Code

	Appendix: Useful stuff about Python
	What the heck is a handle?
	Creating a handle from a string

